

24 May 2023

Revision 1.9

The content of this presentation is CONFIDENTIAL & PROPRIETARY. ALL Rights Reserved.

Current Sensors Programming and Calibration

Calibration Overview

	No calibration/	Fronten	d (sensor-level) Cal	ibration	Backend (MCU-level)
	Blind Calibration	PTC mode	MUST mode	VREF mode	Calibration
Hardware	None/PTC04+DB	РТ	C-04, sensor-specific [DB	MCU
Accuracy	≈5%	0.5%	(91218/19) / 0.1% (Ot	hers)	ADC resolution
Pros	plug & playfactory TC calibration	 accurate analog output only 3 wires 	accurate analog oVDD=5V or 3.3V	output	no specific HWfactory TC calibration
Cons	 magnetic design low absolute accuracy 	 VDD increases to 8V change from factory calib 	4/5 wireschange from factory calib	4 wiresChange from factory calib	 magnetic design should match sensor sensitivity
Sensors	ALL	ALL	91208/09 91216/17 91218 3.3V 91219 SOIC8 3.3V	91218 91219 SOIC8	ALL

INSPIRED ENGINE

Blind Calibration (MLX91208/09/16/17)

The content of this presentation is CONFIDENTIAL & PROPRIETARY. ALL Rights Reserved.

Concept

The sensitivity of each Sensor is individually factory calibrated, using 2 EEPROM parameters RG and FG (Rough Gain, Fine Gain), to reach the target sensitivity, as defined in the datasheet.

Blind calibration consists in recalibrating the sensitivity of the part without performing measurements.

- The operation is accomplished by reading and manually change the RG and FG values stored in the in the EEPROM.
- These 2 parameters, codes the amplification chain that amplify the signal from the hall plates.
- Modifying RG, FG allows to change the output sensitivity of a sensor.

Typical gains and sensitivities

- RG controls a **non-linear** amplification block
- FG controls a linear attenuation block going from 0.5 to 1
- Since all sensors are intrinsically different, the RG and FG values needed to reach the target sensitivity are different from one sensor to the other It's possible to relate RG/FG combination to typical sensitivities:

RG [LSB]		Sensitivity [mV/mT]							
	FG [LSB]	91209	91208CAV	91208CAH	91208CAL				
1	0	7	11	18	29				
1	1023	14	22	35	59				
3	0	17.5	28	44	73				
3	1023	35	55	88	147				
5	0	40.5	63	101	169				
5	1023	81	127	203	338				
7	0	95	150	240	400				
7	1023	190	300	480	800				

RG Code [LSB]	Gain Factor
0	2
1	3.6
2	6.25
3	9
4	12.4
5	20.7
6	30
7	49

Table 1: Gain Factor VS RG Code

(non linear amplifier)

FG Code [LSB]	Gain Factor
0	0.5
512	0.75
1023	1

Table 2: Gain Factor VS FG Code

(linear attenuator)

Blind calibration flow: Example

Recalibrate MLX 91208CAH from S= 100 [mV/mT] to 120 [mV/mT] needs to (i.e. 120% of the actual sensitivity)

- 1. Extraction of RG, FG values from the EEPROM
 - Results for this specific sensor: RG=3, FG=768
 - The actual amplification gain is:

•
$$G = G_{rg} * G_{fg} = 9 * \left(0.5 + \frac{1 - 0.5}{1023 - 0} * (768 - 0)\right) = 7.88$$

- 2. RG/FG have to be redefined to get a gain of G = 120%*7.88 = 9.46
 - We choose:

• RG = 4
$$\rightarrow$$
 G_{rg} = 12.4
• $G_{fg} = \frac{G}{G_{rg}} = \frac{9.46}{12.4} = 0.763 \rightarrow FG = \frac{0.763 - 0.5}{0.5} * 1023 = 538$

• RG = 4, FG = 538

RG Code [LSB]	Gain Factor
0	2
1	3.6
2	6.25
3	9
4	12.4
5	20.7
6	30
7	49

Table 1: Gain Factor VS RG Code

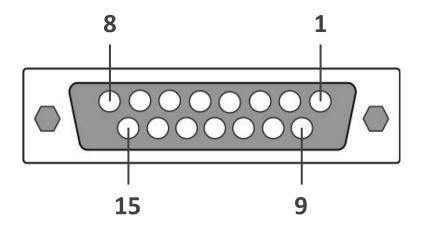
(non linear amplifier)

FG Code [LSB]	Gain Factor
0	0.5
512	0.75
1023	1

Table 2: Gain Factor VS FG Code

(linear attenuator)

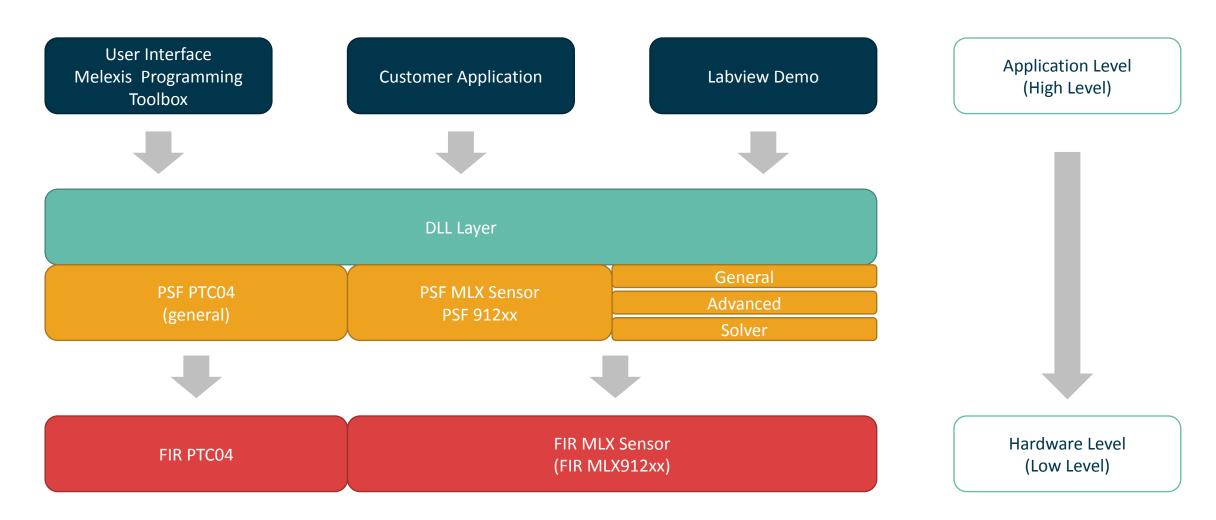
Front-end (sensor level) Calibration

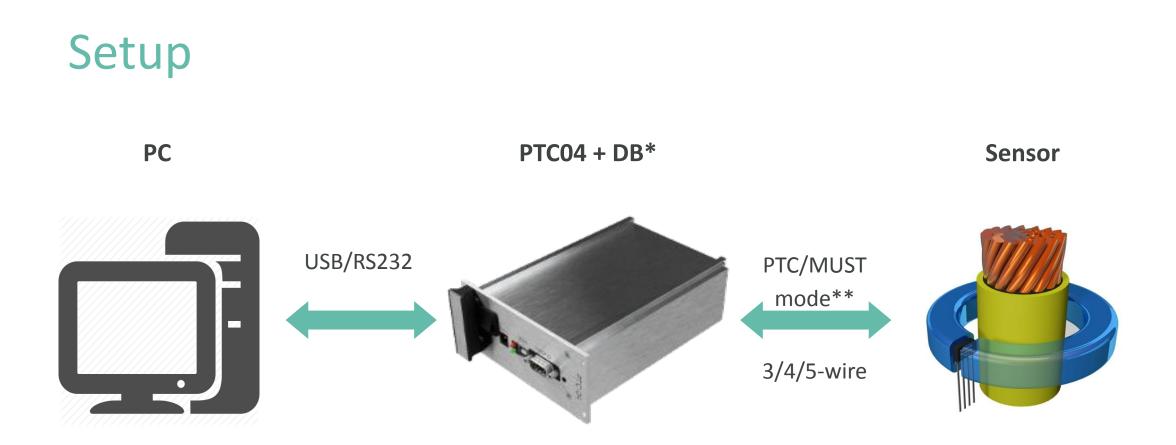


The content of this presentation is CONFIDENTIAL & PROPRIETARY. ALL Rights Reserved.

Hardware Structure

- Melexis PTC04: Universal Programmer for Melexis sensors calibration
- Sensor-specific Daughter-Board (DB): Interface between PTC04 and application connector

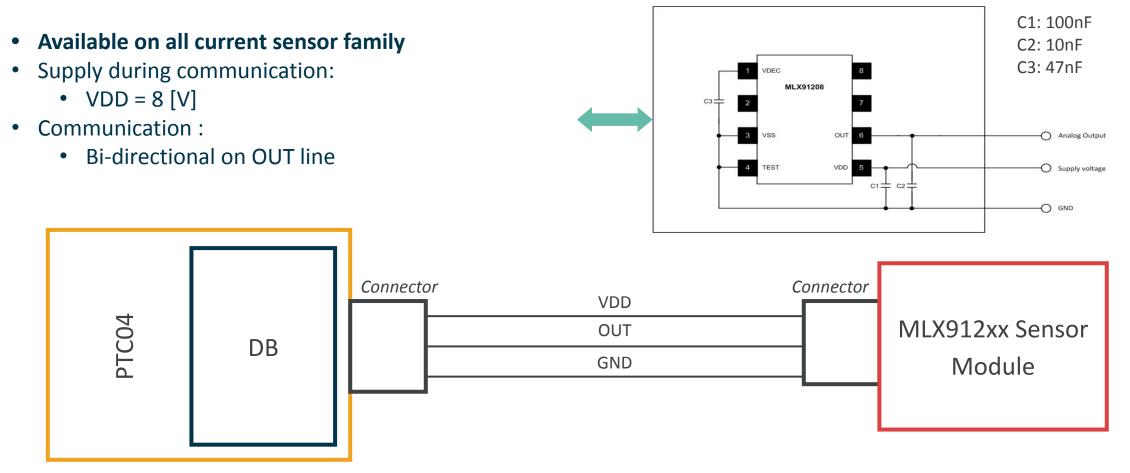

Daughter Board	Compatible Current Sensors
PTC04-DB-HALL05	MLX91208/09 MLX91216/17 MLX91218/19


Daughterboard Connector Pinout

Software structure

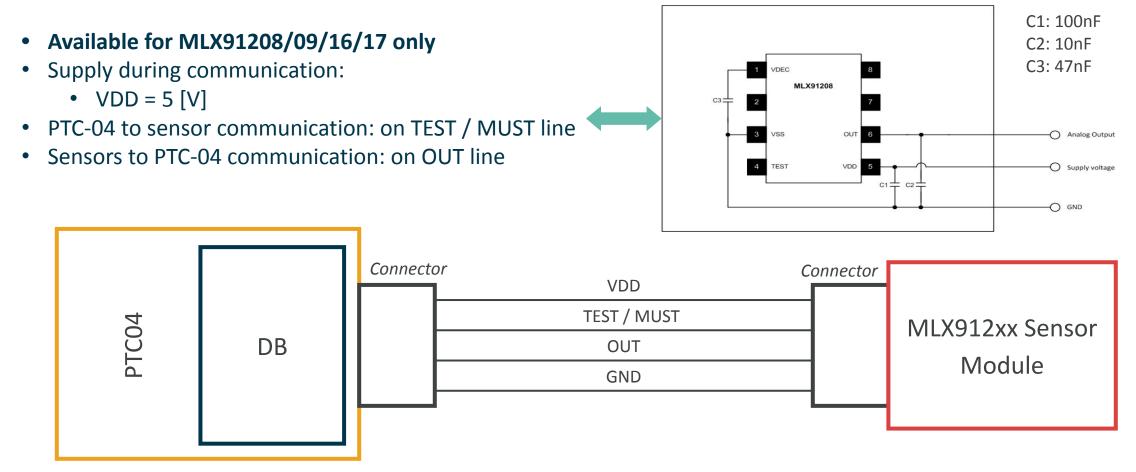
SW implemented in:

- Labview, Python
- C++, VB
- etc..


*DB = Daughter Board

**Protocol to be selected in PSF/UI settings

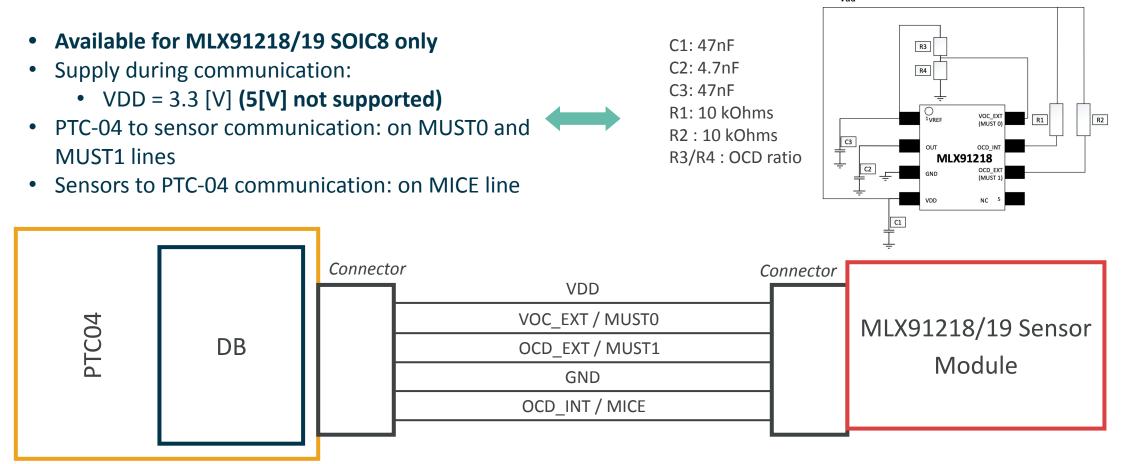
PTC Communication Mode (3-wire)



All unused pins (e.g.: TEST/MUST pin) can be connected to GND for better noise and EMC/ESD performance GND connection of unused pins avoids coupling with the supply and ground loops

MUST Communication Mode (4-wire)

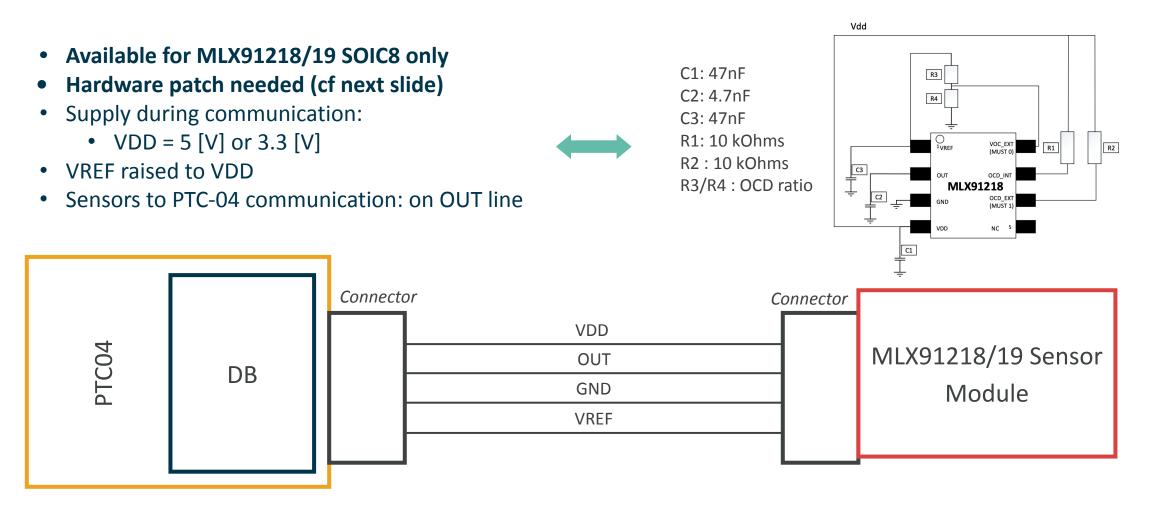
All unused pins (e.g.: TEST/MUST pin) can be connected to GND for better noise and EMC/ESD performance GND connection of unused pins avoids coupling with the supply and ground loops


MUST Communication Mode (4-wire)

DBHALL05 Pins	Names	Description	MLX91208/16 pins	MLX91209/17 pins
1	VDD_DIE	Device Supply both dies	VDD / 5	VDD/1
2	OUT_DIE1	Device Output Die 1	OUT / 6	OUT / 2
3	OUT_DIE2	Device Output Die 2	-	-
4	GND_DIE	Analogue Ground both dies	GND / 3	GND / 4
5	TEST_MUST_DIE1	Digital test pin _ MUST	TEST / 4	TEST / 3
6	NC	Not Conncted	-	-
7	NC	Not Connected	-	-
8	S2M	Master-Slave approach	-	-
9	VDD_SENS_DIE	Sensing Device Supply	VDD / 5	VDD/1
10	OUT_SENS_DIE1	Sensing Device Output Die 1	OUT / 6	OUT / 2
11	OUT_SENS_DIE2	Sensing Device Output Die 2	-	-
12	GND_SENS_DIE	Sensing Analogue Ground Device	GND / 3	GND / 4
13	TEST_MUST_DIE2	Digital test pin - MUST	-	-
14	DB_TEST	Not Connected NC	-	-
15	M2S	Master-Slave approach	-	-

MUST Communication Mode (5-wire)

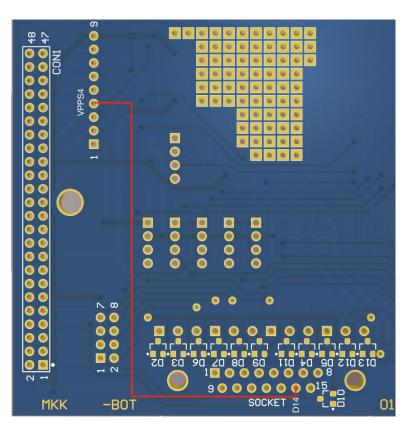
All unused pins can be connected to GND for better noise and EMC/ESD performance GND connection of unused pins avoids coupling with the supply and ground loops



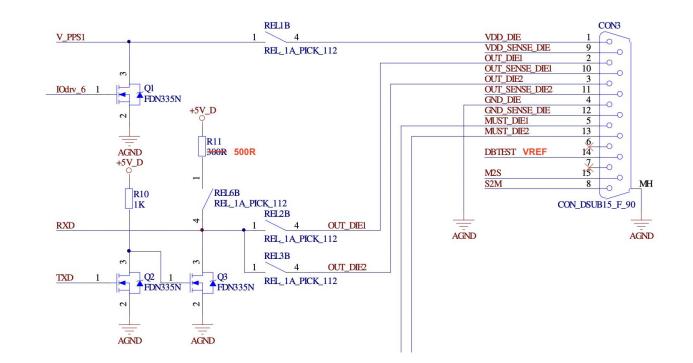
MUST Communication Mode (5-wire)

DBHALL05 Pins	Names	Description	MLX91218/19 SOIC8 pins
1	VDD_DIE	Device Supply both dies	VDD / 4
2	OUT_DIE1	Device Output Die 1	OUT / 2
3	OUT_DIE2	Device Output Die 2	OCD_INT/ 7
4	GND_DIE	Analogue Ground both dies	GND / 3
5	TEST_MUST_DIE1	Digital test pin _ MUST	-
6	NC	Not Conncted	-
7	NC	Not Connected	-
8	S2M	Master-Slave approach	VOC_EXT / 8
9	VDD_SENS_DIE	Sensing Device Supply	VDD / 4
10	OUT_SENS_DIE1	Sensing Device Output Die 1	OUT / 2
11	OUT_SENS_DIE2	Sensing Device Output Die 2	OCD_INT/ 7
12	GND_SENS_DIE	Sensing Analogue Ground Device	GND / 3
13	TEST_MUST_DIE2	Digital test pin - MUST	-
14	DB_TEST	Not Connected NC	-
15	M2S	Master-Slave approach	OCD_EXT / 6

VREF Communication Mode (4-wire)



All unused pins can be connected to GND for better noise and EMC/ESD performance GND connection of unused pins avoids coupling with the supply and ground loops



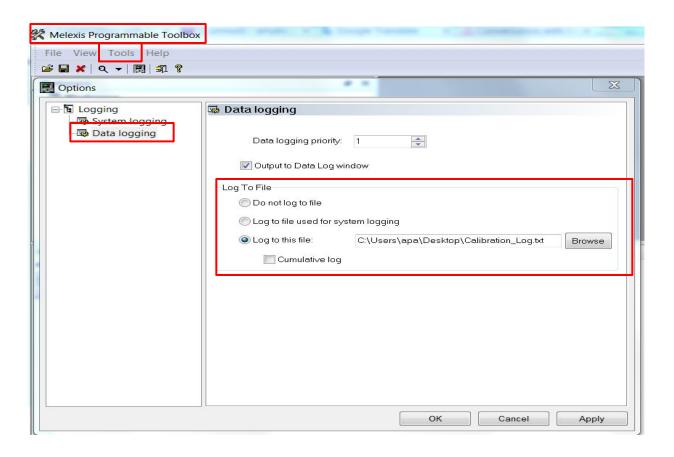
VREF Communication Mode (4-wire) DBHALL05 Hardware patch (for DBHALL05 v1.1 and prior)

1. Route VPPS4 to pin14 of the DB15 connector

2. Change R11 from 300Ohms to 500Ohms

VREF Communication Mode (4-wire)

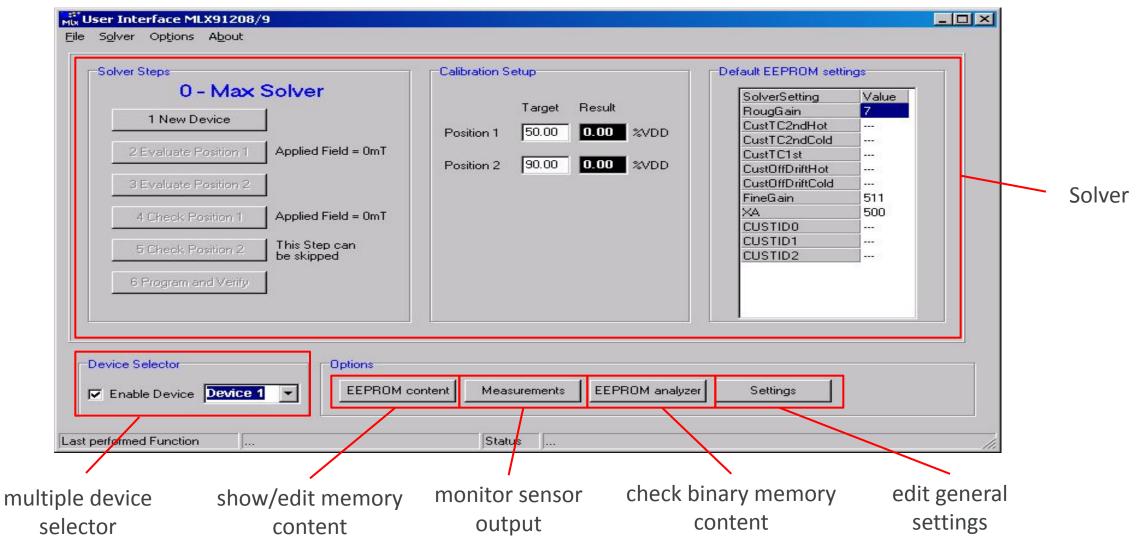
DBHALL05 Pins	Names	Description	MLX91218/19 SOIC8 pins
1	VDD_DIE	Device Supply both dies	VDD / 4
2	OUT_DIE1	Device Output Die 1	OUT / 2
3	OUT_DIE2	Device Output Die 2	-
4	GND_DIE	Analogue Ground both dies	GND / 3
5	TEST_MUST_DIE1	Digital test pin _ MUST	-
6	NC	Not Conncted	-
7	NC	Not Connected	-
8	S2M	Master-Slave approach	-
9	VDD_SENS_DIE	Sensing Device Supply	VDD / 4
10	OUT_SENS_DIE1	Sensing Device Output Die 1	OUT / 2
11	OUT_SENS_DIE2	Sensing Device Output Die 2	-
12	GND_SENS_DIE	Sensing Analogue Ground Device	GND / 3
13	TEST_MUST_DIE2	Digital test pin - MUST	
14	DB_TEST	Not Connected NC	VREF / 1
15	M2S	Master-Slave approach	-


Software for calibration MLX91208/09/16/17

The content of this presentation is CONFIDENTIAL & PROPRIETARY. ALL Rights Reserved.

Calibration Log

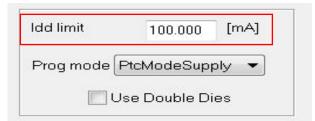
Before starting the Calibration Flow


Optional:

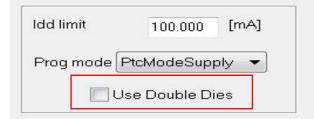
Keep a copy of Calibration measures, steps, calculations

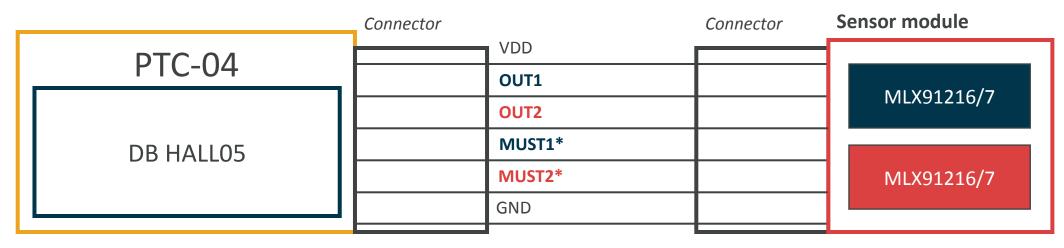
i By default, the option"Do not log to file" is ticked

User interface



Multiple Devices


The software can store EEPROM information for up to 16 devices simultaneously. Each device can be selected/enabled with the device selector. However, only 1 device can be physically connected to the OUT1 line of the PTC04. An **external** hardware switch is required for this purpose. The solver will ask the user to switch between the devices at each step of the calibration process.


During communication, the current consumption increases significantly (short spikes/bursts). The default Idd limit of 100mA is sufficient for 2-3 devices only. For instance, a limit of 300mA is required for 8 devices (multi-socket).

Multiple Devices Dual Die Configuration

The "Use Double Dies" option in the "Settings" window allows to connect 2 devices to the PTC04 simultaneously. When this option is selected, "Device 1" is on OUT1 and "Device 2" is on OUT2.

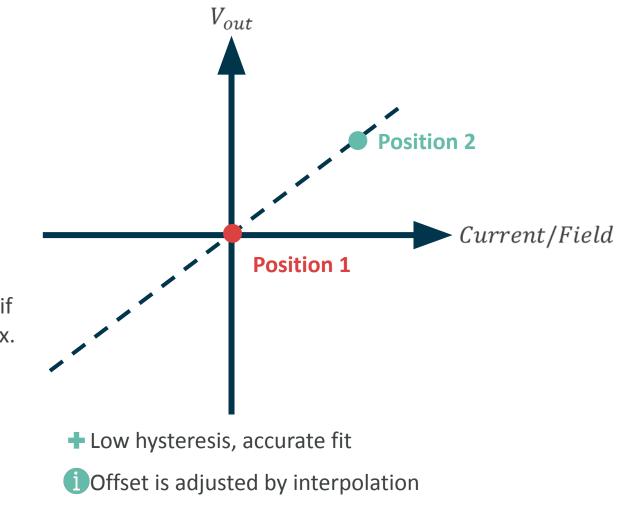
*The MUST pins are only required for MUST mode communication.

Settings

Some of the most important settings are described here.

Device Specifi	c Setting	gs			, 🗆 🗙		
Timings							nominal chip supply (Vdd)
Tpor	65000	[u sec]	VDD Gnd	0.000	M		
Treset	1000	[u sec]	VDD Nom	5.000	M		voltage level for «PtcMode»
Thold	50	[u sec]	VDD PTC	8.000 -	M	_	programming
TEEEraseWrite	5000	[u sec]	Must∨mid	1.140	M		
Must delay1	20	[u sec]	Must ∨high	2.160	M		limit for PTC supply current (increase to
Must delay2	5	[u sec]	Must Vover	3.200	M		supply several devices in parallel)
Baud rate	20000	[bps]					
-Measure Setup-			Idd limit	100.000	[mA]		select programming mode:
Measure Filter	100	[times]	Prog mode F	tcModeSu	pply 🔻 🗲	-	 PtcModeSupply: use Vdd=8V to put chip in
Measure Delay	1000	[u sec]		se Double (Dies 🥿		communication mode
Арріу	/	Clos		Set Default			 MUSTMode: use MUST/test pin to communicate (at nominal Vdd)
							program two devices in parallel on OUT1 and
							OUT2

0-Max Solver

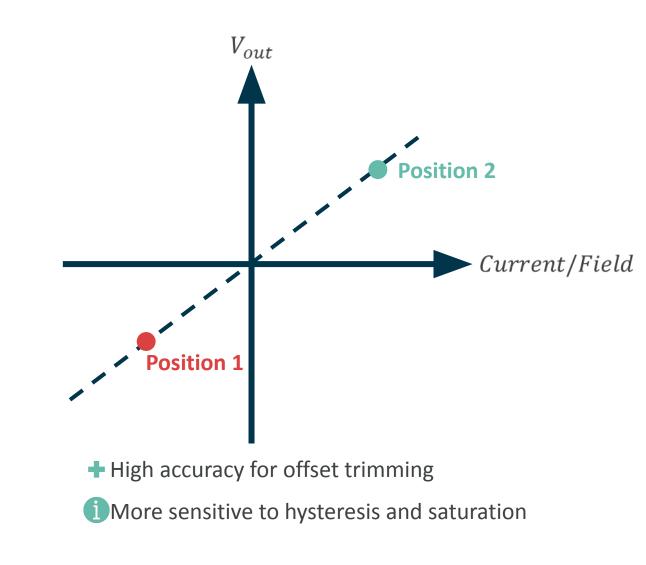

Solver Steps 0 - Max S	Calibration Setup				
1 New Device			Target	Result	
	0	Position 1	50.00	0.00	%VDD
2 Evaluate Position 1	Applied Field = 0mT	Position 2	90.00	0.00	XVDD
3 Evaluate Position 2					
4 Check Position 1	Applied Field = 0mT				
5 Check Position 2	This Step can be skipped				
6 Program and Verify					

Concept: The solver starts from the preset gain and, if required, it sweeps through all allowed RG settings (max. +/-1 for 91206/07)

Two reference positions are needed for offset and gain parameters calibration

Position 1: Zero current/field

Position 2: Positive reference current/field



Min-Max Solver

Solver Steps Min - Max	Solver	Calibration Setup							
1 New Device			Target	Result					
2 Evaluate Position 1	R.	Position 1	10.00	0.00	%VDD				
3 Evaluate Position 2		Position 2	90.00	0.00	%VDD				
4 Check Position 1									
5 Check Position 2	This Step can be skipped								
6 Program and Verify									

Concept: The solver starts from the preset gain and decreases RG only if the output is clamped at Position 1. No RG adjustment is possible at position 2. Two reference positions are needed for offset and gain parameters calibration

Position 1: Negative reference current/field
Position 2: Positive reference current/field

Measurements window

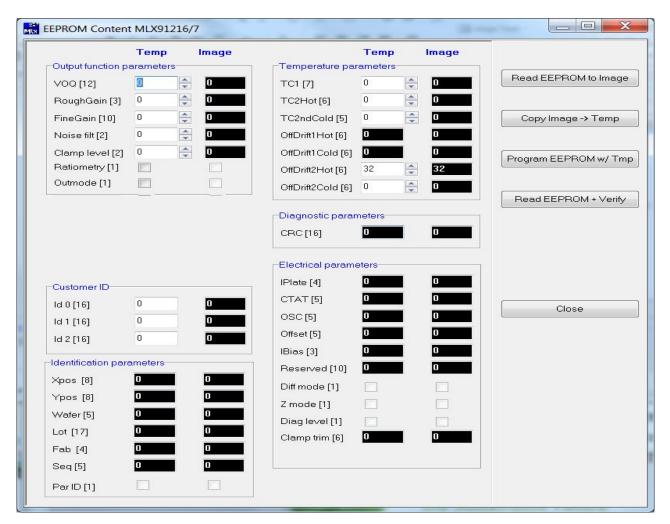
This window allows to monitor sensor supply and output. It is good practice to check that VDD and IDD are in the expected range before starting to program the sensor.

Measurements				
		Output		
10 9 		0		100 90 80 70 [ppA%] 50 90 80 70 60 50 90 80 70 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 90 80 70 80 70 80 80 70 90 80 70 90 80 70 90 80 70 90 80 70 70 80 80 70 80 70 80 70 80 70 80 70 80 80 70 80 80 70 80 80 70 80 80 70 80 80 70 80 80 70 80 80 70 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80
Fixed scale Clear Chart	100 Points on X-axis Vout [V] Repeat Meas. Func.	VDD / IDD - V - mA	OUT RAM	
Close			Measure By RAM	Measure By ROM

measure by RAM

program RAM with values from the TEMP register, then measure output

measure by ROM


reset device to program RAM with EEPROM values, then measure output

measure OUT

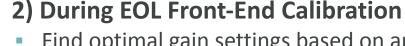
perform single measurement

EEPROM window

To change the value of one or several EEPROM parameter(s), always perform the following steps:

- \rightarrow read EEPROM to Image
- \rightarrow copy Image to Temp
- \rightarrow edit the Temp value(s)
- \rightarrow program EEPROM with Temp
- \rightarrow read EEPROM and verify

The final verification step is required to readback the updated CRC code.



MLX91206 TC Particularity

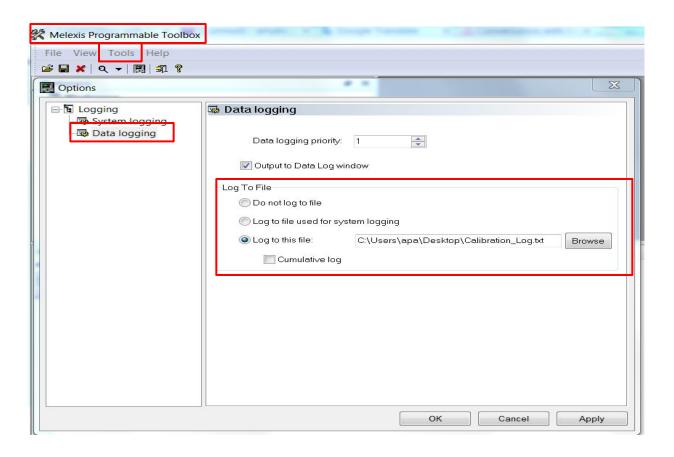
 For MLX91206 only, the temperature compensation parameters TC1, TC2COLD, TC2HOT, OFFDRIFT COLD & HOT are re-trimmed when the gain (RG, FG) is changed in the application.

1) During Final Test

- Find optimal TC parameters for RG nominal, RG+1 and RG-1
- Store optimal TC parameters for nominal RG in EEPROM
- Store "delta TC" parameters for RG+1 and RG-1 in unused EEPROM bits

- Find optimal gain settings based on applied field/current
- If RG and/or FG has changed: correct TC parameters for new gain settings based on "delta TC" parameters and look-up tables built based on the Final Test results

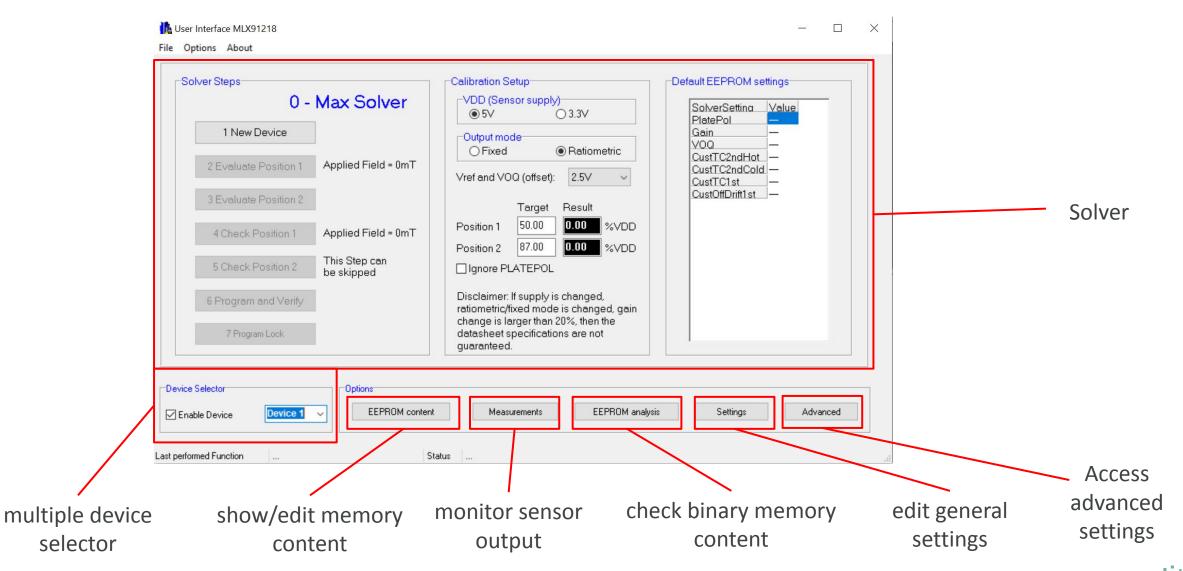
Note: the algorithm is based on relative gain/TC changes, therefore it will not work correctly if someone manually changes gain or TC between steps 1 and 2. If a setting is manually changed at any stage, the complete calibration is lost.


Software for calibration MLX91218/19

The content of this presentation is CONFIDENTIAL & PROPRIETARY. ALL Rights Reserved.

Calibration Log

Before starting the Calibration Flow


Optional:

Keep a copy of Calibration measures, steps, calculations

i By default, the option"Do not log to file" is ticked

User interface

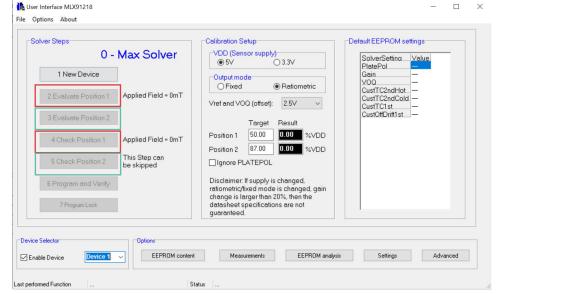
INSPIRED ENGINEE

Disclaimer: gain range, supply and reference settings

- In the following cases, the datasheet performances are not guaranteed:
 - Sensitivity is outside the datasheet programmable range for a particular part number
 - Supply settings are changed
 - Output mode (ratiometric or fixed) is changed

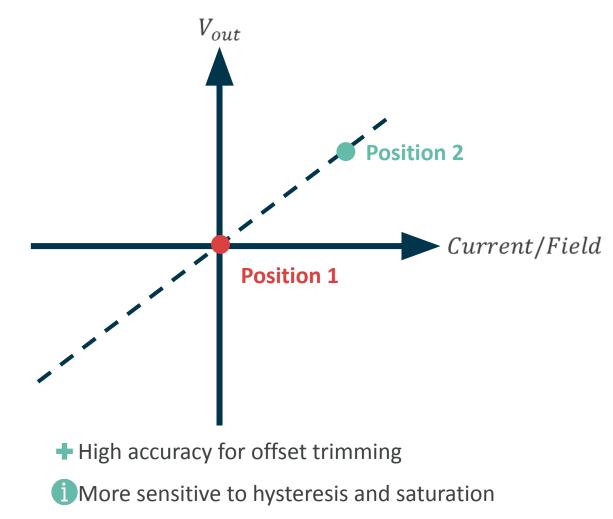
Multiple Devices

The software can store EEPROM information for up to 16 devices simultaneously. Each device can be selected/enabled with the device selector. However, only 1 device can be physically connected to the OUT1 line of the PTC04. An **external** hardware switch is required for this purpose. The solver will ask the user to switch between the devices at each step of the calibration process.



Some of the most impo	rtant settings are described here.	7
Device Specific Settings	$ \Box$ \times	
TimingsTpor65000[u sec]Treset1000[u sec]Thold50[u sec]TEEEraseWrite5000[u sec]	VoltagesVDD Gnd0.000[V]VDD Nom5.000[V]VDD PTC8.000[M]	nominal chip supply (Vdd) voltage level for «PtcMode» programming
Measure Setup Measure Filter 100 [times] Measure Delay 1000 [u sec] Apply Cl	Readback Setup Baudrate 20000 [bps] Prog mode PtcModeSupply ose Set Default	 select programming mode: PtcModeSupply: use Vdd=8V to put chip in communication mode MUSTMode: use MUST/test pin to communicate (at nominal Vdd) PtcModeVref: use Vref/Out pin to communicate (at nominal Vdd)

0-Max Solver

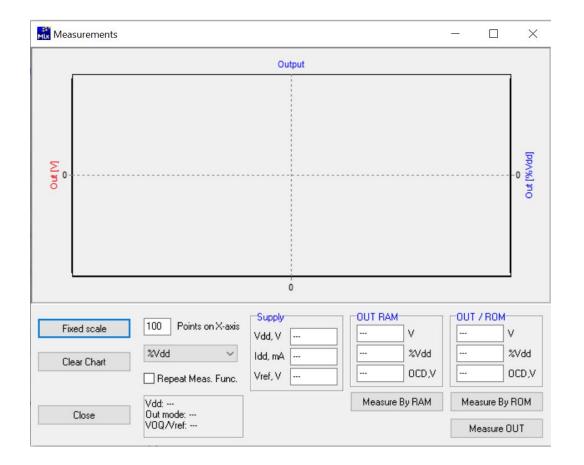

Concept: The solver starts from the preset gain.

Two reference positions are needed for offset and gain parameters calibration:

Position 1: Zero current/field

Position 2: Positive reference current/field

Program Lock: The program lock button, if pressed, will lock the eeprom and disable any possibility of re-programming the sensor. **If subsequent programming is needed, do not press this button.**



38

Measurements window

This window allows to monitor sensor supply and output. It is good practice to check that VDD and IDD are in the expected range before starting to program the sensor.

measure by RAM

program RAM with values from the TEMP register, then measure output

measure by ROM

reset device to program RAM with EEPROM values, then measure output

measure OUT

perform single measurement

EEPROM window

	Temp	Image		Temp	Image		Temp	Image	Read EEPROM to Image
Gain			Temperature			VSEL	_		
GA [12]	0	?	T4C [5]	0	?				
GB [12]	0	?	T1C [7]	0	?	SET3V			Copy Image -> Temp
GC [12]	0	?	TCHOT [4]	0	?	R_NF			
6GE [2]	0	?	TCCOLD [4]	0	2	CT			
, and [1]	0	-				SETTHRESH			ProgramEEPROM w/ Tmp
Reference			T3C [3]	0	?	GS			
RS [2]	0	?				DVR			ReadEEPROM + Verify
			OCD STE [3]	0	?	ARF			nodeennon rong
RTA [3]	0	?	Filter SF [2]	0	2	TDT			
RTB [3]	0	?	BGT [2]		:	S_COMPOFF			
RTC [3]	0	?		0	?	PO			
RTD [3]	0	?	DIF [5]	0	?	Stress			
Dffset						LAMBDA [3]	0	?	
DTA [6]	0	?	OSCTRIM [3]	0	?	S_OFF [7]	0	?	Close
OTB [6]	0	?	IH [4]	0	?	-Identification par	ameters		
DTC [6]	0	?	R_CORR [2]	0	?	CSTID [16]	amotora	2	
						CSTID [16]		<i>!</i>	

To change the value of one or several EEPROM parameter(s), always perform the following steps:

- \rightarrow read EEPROM to Image
- \rightarrow copy Image to Temp
- \rightarrow edit the Temp value(s)
- \rightarrow program EEPROM with Temp
- \rightarrow read EEPROM and verify

The final verification step is required to readback the updated CRC code.

EEPROM Lock

• EEPROM lock is writing the MSB of each word, blocking any subsequent writing on the EEPROM

Unlocked EEPROM

	115	14	12	12	111	110	0	0	17	16	5	14	15	12	1	Ιn	Data (Voted	Voting	
0	13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	7FFF	1F	00000	
1			1	<u> </u>	1	1	Ľ	1	<u> </u>	1	1	Ľ	1	Ľ	1	1	2D6B	OB	00000	
2	1	-	-	-	1	1	-	Ľ	-	1	1	-	Ľ	-	1	1	0C63	03	00000	
3	1	-	-	-	ŕ	ŕ	1	-	1	Ľ.	ŕ	1	-	1	ŕ	ŕ	0000	00	00000	
4	1	-	-	-	-	1	1	-	-		-	1	-	1	1	1	0000	00	00000	
5	1	-		-		1	1		1	-	1		-	1	1	-	0000	00	00000	
6	1	-		-		-			-	-	-	1	-		1	1	0000	00	00000	
7	1	-	1	-	-	-	1	1	1		1		1	1	1	-	2108	08	00000	
8	1																0000	00	00000	
9	1		1	1		1		1	1		1		1	1		1	35AD	0D	00000	
10	1			1					1					1			1084	04	00000	
11	1					1					1					1	0421	01	00000	
12			1	1	1			1	1	1		1	1	1	1		39CE	0E	00000	
13	1			1					1					1			1084	04	00000	
14		1		1			1		1			1		1			5294	14	00000	
15																	0000	00	00000	
16					1					1					1		0842	02	00000	
17				1	1				1	1				1	1		18C6	06	00000	
18			1		1	1		1		1	1		1		1	1	2D6B	0B	00000	
19			1	1	1			1	1	1			1	1	1		39CE	0E	00000	
20				1	1				1	1				1	1		18C6	06	00000	
21					1					1					1		0842	02	00000	
22		1				1	1				1	1				1	4631	11	00000	
23		1		1	1		1		1	1		1		1	1		5AD6	16	00000	
24		1		1		1	1		1		1	1		1		1	56B5	15	00000	
25		1		1			1		1			1		1			5294	14	00000	
26		1	1	1	1		1	1	1	1		1	1	1	1		7BDE	1E	00000	
27		1	1	1			1	1	1			1	1	1			739C	1C	00000	
28		1	1		1		1	1		1		1	1		1		685A	1A	00000	
29					1	1	1	1				1	1			1	0F19			
30			1	1	1	1		1	1		1				1		3DA2	•		
31	1						1	1				1		1			8314	•		

Locked EEPROM

_	ler		40	1.0	11	40	10	10	1-	I.	le.	Ŀ	10	10	Ŀ	I.	10	<u></u>	Voting
)	15	14	13	1	1	10	1	8	1	1	1	1	3	1	1	0	FFFF	1F	00000
,	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	AD6B	OB	00000
2	ľ	-	1	-	1	1	-	1	-	1	1	-	1	-	1	1	AD 68 8C 63	08	00000
}	1	-	-	-	1	-	-	-	-	1	1	-	-	-	1	1	8000	00	00000
, 1	ľ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8000	00	00000
5	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	8000	00	00000
;	1	-	-	-	-	-	-	-	-	+	-	+	-	-	-	+	8000	00	00000
,	ľ	-	1	-	-	-	-	1	-	-	-	-	1	-	-	-	A108	08	00000
3	1	-	1	-	-	-	-	1	-	t	-	t	1	-	-	1	8000	00	00000
, }	ľ	-	1	1	-	1	-	1	1	+	1	+	1	1	-	1	B5AD	0D	00000
0	1	-	1	1	-	-	-	1	1	+	Ľ	-	Ľ	1	-	1	9084	04	00000
1	1	-	-	<u>'</u>	-	1	-	-	Ľ	+	1	-	-	<u>'</u>	-	1	8421	01	00000
12	1	-	1	1	1	-	-	1	1	1	Ľ	1	1	1	1	Ľ	BSCE	OE	00000
3	i	-	ŕ	1	Ľ.	-	-	Ľ	1	Ľ	1	-	Ľ	1	ŕ	-	9084	04	00000
4	1	1	-	1	-	-	1	-	1	1	1	1	1	1	t	+	D294	14	00000
15	i	<u> </u>	-	Ľ	-	-	Ľ.	-	Ľ	1	1	Ľ	-	Ľ.	1	-	8000	00	00000
6	1		-	-	1	-	-	1	t	1	t	1	1	-	1	1	8842	02	00000
7	1	-	-	1	1				1	1	1	1	-	1	1	1	98C6	06	00000
8	1		1		1	1		1	İ	1	1	-	1	-	1	1	AD6B	OB	00000
9	1		1	1	1			1	1	1			1	1	1		B9CE	0E	00000
20	1			1	1				1	1				1	1		98C6	06	00000
21	1				1					1					1		8842	02	00000
2	1	1				1	1				1	1				1	C631	11	00000
23	1	1		1	1		1		1	1		1		1	1		DAD6	16	00000
24	1	1		1		1	1		1		1	1		1		1	D685	15	00000
25	1	1		1			1		1			1		1			D294	14	00000
26	1	1	1	1	1		1	1	1	1		1	1	1	1		FBDE	1E	00000
27	1	1	1	1			1	1	1			1	1	1			F39C	1C	00000
28	1	1	1		1		1	1		1		1	1		1		EB5A	1A	00000
9					1	1	1	1				1	1			1	0F19		
30			1	1	1	1		1	1		1				1		3DA2		
31	1						1	1				1		1			8314		

Back-end (MCU level) Calibration

The content of this presentation is CONFIDENTIAL & PROPRIETARY. ALL Rights Reserved.

MCU Correction Concept

Best Suited for: multi-sensors applications, i.e. on power distribution units, where typically 12 to 24 sensors are on the same PCB in order to monitor the current of each channel.

In All Melexis current sensors are factory-calibrated over temperature!

• The concept :

- assemble the factory-calibrated sensors on each channel
- apply a reference current (for which a precise output is targeted) on each channel and store the output of each sensor
- compare the obtained output to the reference one and calculate the required corrective factor
- store and apply the corrective factor in the MCU

The information contained herein is proprietary and/or confidential information of Melexis and the information or the use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

The information is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability.

Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions.

Melexis NV \mathbb{C} - No part of this document may be reproduced without the prior written consent of Melexis. (2020) 14

We Engineer The Sustainable Future

The content of this presentation is CONFIDENTIAL & PROPRIETARY. ALL Rights Reserved.